KENAPA MOBIL INJEKSI JUSTRU LEBIH BOROS

Mobil-mobil sekarang kebanyakan sudah memakai sistem injeksi. Komponen injeksi ini sangat berpengaruh terhadap konsumsi bahan bakar. Dengan rutin perawatan dan settingan yang pas, maka mobil akan irit. Biar bagaimanapun, konsumsi bahan bakar bergantung dari sistem pasokannya.

SYSTEM KERJA MOBIL HYBRID

Mobil hybrid adalah mobil yang berjalan dengan dua sumber tenaga, mesin yang berjalan dengan minyak dan motor yang berjalan dengan tenaga listrik. Mesin hybrid berjalan dengan kombinasi dua tenaga tersebut.

PRINSIP KERJA MESIN DIESEL

Motor diesel termasuk jenis kelompok motor pembakaran dalam (internal combustion engines), dimana proses pembakarannya didalam silinder. Motor diesel ini menggunakan bahan bakar cair yang dimasukkan ke dalam ruang pembakaran silinder motor dengan diinjeksikan menggunakan pompa injeksi.

MENGHITUNG RASIO KOMPRESI MESIN

Rasio kompresi merupakan perbandingan volume ruang bakar saat piston di titik mati bawah (TMB ; ketika piston berada di titik paling jauh dari kepala silinder) dengan volume ruang bakar saat titik mati atas (TMA ; ketika piston berada di titik paling dekat dari kepala silinder).

MENGHITUNG DAYA DAN TORSI MESIN

Torsi adalah ukuran kemampuan mesin untuk melakukan kerja, jadi torsi adalah suatu energi. Besaran torsi adalah besaran turunan yang biasa digunakan untuk menghitung energi yang dihasilkan dari benda yang berputar pada porosnya.

Sunday, 8 September 2013

Bagian Bagian Utama Kopling

Secara umum bagian-bagian utama dari sebuah kopling terdiri atas :


1. Roda Penerus ( flywheel)
Berupa sebuah piringan yang dihubungkan dengan  poros penggerak (poros engkol) pada salah satu sisinya. Flywheel ini akan berputar mengikuti putaran dari poros penggerak.
2. Plat Penekan ( Pressure Plat)
Plat penekan berfungsi untuk menekan plat gesek kearah roda penerus pada saat kopling terhubung.
3. Plat Gesek ( disc clutch )
Plat gesek ditempatkan diantara roda penerus dan plat penekan. Plat gesek ini berfungsi untuk meneruskan daya dan putaran dari roda penerus ke naaf saat kopling terhubung.
4. Naaf
Naaf berfungsi untuk menghubungkan plat gesek dengan spline pada poros yang digerakkan. Pada saat kopling terhubung maka daya dan putaran akan diteruskan dari plat gesek ke poros yang digerakkan melalui naaf.
5. Spline
Spline adalah gigi luar yang terdapat pada permukaan poros yang bersangan dengan gigi dalam yang terdapat pada naaf. Spline berfungsi untuk meneruskan momen puntir dari plat gesek ke poros melalui perantaraan naaf.
6. Bantalan Pembebas ( Releasing Bearing )
Bantalan ini dapat digerakkan maju-mundur dengan menekan pedal kopling . Fungsinya adalah untuk meneruskan tekanan pada pedal kopling ke pegas matahari yang selanjutnya akan melepas  hubungan kopling.
7. Pegas Matahari
Pegas matahari berfungsi untuk menarik plat penekan menjauhi flywheel, yang dengan demikian membebaskan plat gesek dan membuat kopling menjadi tidak terhubung. Pegas matahari ini akan menjalankan fungsinya saat pedal kopling ditekan.
8. Penutup ( Cover )
Penutup pada kopling ikut berputar bersama roda penerus. Fungsi penutup ini adalah sebagai tempat dudukan berbagai elemen yang membentuk kopling serta sebagai penahan bantalan pembebas.

Saturday, 31 August 2013

Perhitungan Diameter Poros Transmisi




Diameter poros dapat diperoleh dari rumus:


dimana : .
dp = diameter poros ( mm )
= kekuatan tari baha ( kg/mm2)
Kt = faktor koreksi untuk kemungkinan terjadinya tumbukan, faktor ini dipilih sebesar 1,0 jika beban dikenakan beban secara halus, dipilih sebesar 1,0 – 1,5 jika terjadi sedikit kejutan atau tumbukan,dan dipilih sebesar 1,5 – 3,0 jika beban dikenakan dengan kejutan atau tumbukan yang besar. Dalam hal ini harga Kt diambil sebesar 2,0 untuk menjamin keamanan dari poros.
Cb = faktor koreksi untuk kemungkinan terjadinya beban lentur, dimana untuk perkiraan sementara ditetapkan bahwa beban hanya terjadi karena momen puntir saja, dan diperkirakan tida akan terjadi pembebanan lentur, sehingga harga Cb ini diambil sebesar 1,0.

Maka diameter poros yang direncanakan:
dp=    
dp = 31,0177 mm
dp = 31 mm


3.6. Pemeriksaan Kekuatan Poros
Ukuran poros yang telah direncanakan harus diuji kekuatannya. Pengujian dilakukan dilakukan dengan memeriksa  tegangan geser yang terjadi ( akibat momen puntir ) yang bekerja pada poros. Apabila tegangan geser ini melampaui tegangan geser izin yang dapat ditahan oleh bahan maka poros mengalami kegagalan. 
Besar tegangan geser akibat momen puntir yang bekerja pada poros diperoleh dari:

                                                                                      
dimana:  tegangan geser akibat momen puntir ( kg/mm2 )
Mp = momen puntir yang terjadi ( kg.mm )
dp   = diameter poros ( mm )
Untuk momen puntir sebesar Mp= 14043,3755 kg.mm, dan diameter poros dp= 31 mm, maka tegangan gesernya adalah :

 
 

Dari hasil diatas dapat dilihat bahwa tegangan geser yang terjadi lebih kecil dari tegangan geser izinnya ( ?p < ?a) dimana ?a = 4,8 kg/mm2, sehingga dapat disimpulkan bahwa ukuran poros yang direncanankan cukup aman.


Wednesday, 28 August 2013

Sepeda motor ini memiliki 48 silinder ( 4000 cc)



Inilah mesin sepeda motor paling unik dan paling besar di dunia, mesin sepeda motor ini memiliki 48 silinder dengan kapasitas total 4000cc, mesin ini terdiri dari16 mesin Kawasaki 2 langkah  S1/kh250.  Mesin S1/kh250 ini aslinya terdiri dari 3 silinder, dengan kapasitas tiap silinder 250cc.  Jika dihitung, 16 x 250cc, maka seharusnya kapasitas silinder totalnya adalah 4000cc,. Sepeda motor ini juga memiliki mesin kecil 75cc di bawah tempat duduk  yang berfungsi sebagai motor starter. Sepeda motor ini juga menggunakan injection sebagai pemasok bahan bakar. Sipemilik motor ini juga memasang tangki Nitro pada sepeda motornya, pendingin air, serta supercharger H1. Transmisi sepeda motor ini menggunakan gearbox dari sepeda motor BMW, karenanya penerus tenaga ke roda tidak menggunakan rantai, tetapi as kopel seperti layaknya sepeda motor BMW.  
Uniknya pemilik sepeda motor ini bukanlah seorang insinyur mesin, melainkan seorang mandor bangunan.  Sepeda motor ini tercatat di Guinness World record, sebagai kendaraan darat dengan jumlah silinder terbanyak.  Simon membutuhkan waktu 3 tahun untuk mencari mesin S1/KH250 dan merakitnya menjadi satu. Sayang tidak disebutkan kecepatan maksimal dan total daya kuda sepeda motor rakitan  ini. Sepeda motor ini tidak hanya  bisa berjalan, tetapi layak ditunggangi. berat sepeda motor ini mencapai lebih dari satu ton.







Tuesday, 20 August 2013

Prinsip kerja turbin gas

Turbin gas adalah mesin yang memanfaatkan gas sebagai fluida untuk memutar turbin dengan pembakaran dalam atau internal. Didalam turbin gas energi kinetik dikonversikan menjadi energi mekanik melalui udara bertekanan yang akan memutar roda turbin sehingga menghasilkan daya. Sistem turbin gas yang paling sederhana terdiri dari tiga komponen yaitu kompresor, ruang bakar dan turbin gas.



Prinsip Kerja Sistem Turbin Gas (Gas-Turbine Engine)

Udara masuk kedalam kompresor melalui saluran masuk udara (inlet). Kompresor berfungsi untuk menghisap dan menaikkan tekanan udara tersebut, sehingga temperatur udara juga meningkat. Kemudian udara bertekanan ini masuk kedalam ruang bakar. Di dalam ruang bakar dilakukan proses pembakaran dengan cara mencampurkan udara bertekanan dan bahan bakar. Proses pembakaran tersebut berlangsung dalam keadaan tekanan konstan sehingga dapat dikatakan ruang bakar hanya untuk menaikkan temperatur. Gas hasil pembakaran tersebut dialirkan ke turbin gas melalui suatu nozel yang berfungsi untuk mengarahkan aliran tersebut ke sudu-sudu turbin. Daya yang dihasilkan oleh turbin gas tersebut digunakan untuk memutar kompresornya sendiri dan memutar beban lainnya seperti generator listrik, dll. Setelah melewati turbin ini gas tersebut akan dibuang keluar melalui saluran buang (exhaust).
Secara umum proses yang terjadi pada suatu sistem turbin gas adalah sebagai berikut:

  • Pemampatan (compression) udara di hisap dan dimampatkan
  • Pembakaran (combustion) bahan bakar dicampurkan ke dalam ruang bakar dengan udara kemudian di bakar.
  • Pemuaian (expansion) gas hasil pembakaran memuai dan mengalir ke luar melalui nozel (nozzle).
  • Pembuangan gas (exhaust) gas hasil pembakaran dikeluarkan lewat saluran pembuangan.

Pada kenyataannya, tidak ada proses yang selalu ideal, tetap terjadi kerugiankerugian yang dapat menyebabkan turunnya daya yang dihasilkan oleh turbin gas dan berakibat pada menurunnya performa turbin gas itu sendiri. Kerugian-kerugian tersebut dapat terjadi pada ketiga komponen sistem turbin gas. Sebab-sebab terjadinya kerugian antara lain:
1.Adanya gesekan fluida yang menyebabkan terjadinya kerugian tekanan (pressure losses) di ruang bakar.
2.Adanya kerja yang berlebih waktu proses kompresi yang menyebabkan terjadinya gesekan antara                bantalan turbin dengan angin.
3.Berubahnya nilai Cp dari fluida kerja akibat terjadinya perubahan temperatur dan perubahan komposisi        kimia dari fluida kerja.
4.Adanya mechanical loss.

Klasifikasi Turbin Gas
Turbin gas dapat dibedakan berdasarkan siklusnya, kontruksi poros dan lainnya. Menurut siklusnya turbin gas terdiri dari:

  • Turbin gas siklus tertutup (Close cycle)
  • Turbin gas siklus terbuka (Open cycle)

Perbedaan dari kedua tipe ini adalah berdasarkan siklus fluida kerja. Pada turbin gas siklus terbuka, akhir ekspansi fluida kerjanya langsung dibuang ke udara atmosfir, sedangkan untuk siklus tertutup akhir ekspansi fluida kerjanya didinginkan untuk kembali ke dalam proses awal.
Dalam industri turbin gas umumnya diklasifikasikan dalam dua jenis yaitu :

  • Turbin Gas Poros Tunggal (Single Shaft)

Turbin jenis ini digunakan untuk menggerakkan generator listrik yang menghasilkan energi listrik untuk keperluan proses di industri.

  • Turbin Gas Poros Ganda (Double Shaft)

Turbin jenis ini merupakan turbin gas yang terdiri dari turbin bertekanan tinggi dan turbin bertekanan rendah, dimana turbin gas ini digunakan untuk menggerakkan beban yang berubah seperti kompresor pada unit proses.Siklus-Siklus Turbin Gas

Tiga siklus turbin gas yang dikenal secara umum yaitu:
Siklus Ericson
Merupakan siklus mesin kalor yang dapat balik (reversible) yang terdiri dari dua proses isotermis dapat balik (reversible isotermic) dan dua proses isobarik dapat balik (reversible isobaric). Proses perpindahan panas pada proses isobarik berlangsung di dalam komponen siklus internal (regenerator), dimana effisiensi termalnya adalah : hth = 1 – T1/Th, dimana T1 = temperatur buang dan Th = temperatur panas.
Siklus Stirling
Merupakan siklus mesin kalor dapat balik, yang terdiri dari dua proses isotermis dapat balik (isotermal reversible) dengan volume tetap (isokhorik). Efisiensi termalnya sama dengan efisiensi termal pada siklus Ericson.
Siklus Brayton
Siklus ini merupakan siklus daya termodinamika ideal untuk turbin gas, sehingga saat ini siklus ini yang sangat populer digunakan oleh pembuat mesin turbine atau manufacturer dalam analisa untuk performance upgrading. Siklus Brayton ini terdiri dari proses kompresi isentropik yang diakhiri dengan proses pelepasan panas pada tekanan konstan. Pada siklus Bryton tiap-tiap keadaan proses dapat dianalisa secara berikut:

Sunday, 18 August 2013

Metana hidrat penemuan baru untuk energi dunia

     
Metana hidrat merupakan gas alam berbentuk kristal yang ditemukan di bawah lapisan es Arktik (Kutub Utara). Pada suhu kamar, kristal metana hidrat memancarkan hawa panas yang intensif sehingga sering kali dijuluki api dalam es. Gas metana dalam jumlah yang luar biasa tersimpan dalam bentuk es di bawah dasar laut. Pakar memperkirakan, cadangan hidrat metana di bawah lautan internasional berjumlah sekitar 3.000 gigaton, atau tiga trilyun (3.000.000.000.000) kilogram. Ini adalah jumlah potensi karbon yang diperkirakan dua kali lebih besar dibandingkan cadangan batu bara, minyak dan gas bumi secara keseluruhan. Karena itu negara-negara lapar energi, seperti Cina, Jepang, Korea Selatan, India, Brazil dan AS sudah bersiap-siap di lokasi perkiraan cadangan untuk mengekploitasi hidrat metana. Metana hidrat terbentuk ketika air dan gas metana bercampur di bawah tekanan tinggi pada suhu rendah, sehingga membeku bersama-sama. Untuk memisahkannya, para peneliti memompa air keluar dari bawah dasar laut, menurunkan tekanan sekitar cadangan tersebut  dan mencairkannya. Gas juga dapat diekstraksi dengan memanaskan metana hidrat yang padat, tetapi teknik tekanan rendah menggunakan energi yang jauh lebih sedikit.

Penelitian yang baru saat ini telah ditemukan sumber daya alam baru yang bermanfaat dengan energi yang efisien dan cukup ramah bila dikelola dengan baik. Hidrat metana (CH4) ialah berupa kandungan tersebut. yaitu berupa metana yang terpendam didasar permukaan dari dala waktu yang lama. Sumber daya alam ini terbentuk melalui proses degradasi organisme oleh proses mikroorganisme yang membantu mengurai saat mengendap ke permukaan. terjadi pemasakan hingga karbon dilepaskan sedangkan metana di simpan dalam kurun waktu yang lama.
            Hidrat metana berbentuk seperti bongkahan putih, dari berbagai kalangan menganggap hidrat metana merupakan emas putih yang mengendap di permukaan laut dan akan terjadi kenaikan suhu permukaan global andai saja gas ini terlepas ke udara secara bebas atau tanpa kontrol. Hidrat metana banyak di temukan pada daerah yang kondisi permukaan perairan yang memiliki kedalaman antara 400- 2.000 dpml. Namun kondisi perairan yang sedikit pengaruh aktivitas vulkanis menjadi nilai plus banyak ditemukan cadangan hidrat metana yang tersembunyi di perut bumi.
            Energi alternatif hidrat metana yang digunakan sama dengan perbandingan 1:10 dengan menggunakan batu bara, dan batu bara yang sifatnya berpengaruh pada polusi dan pemanasan global yang menimpa saat ini. Hidrat metana bisa dijadikan sebagai konversi energi yang dibutuhkan saat ini melalui pengeboran pada titik-titik keberadaan gas hidrat tersebut dan  disalurkan ke pembangkit listrik yang ada di dekat pantai. Mekanisme sederhana ini di dukung dengan proses penyimpanan karbon (CO2) yang dihasilkan oleh hasil energi dengan menyimpannya ke dalam laut tempat hidrat tadi di ambil. Karena air laut memiliki kemampuan yang spesifik dalam meredam jumlah karbon yang tersebar di udara.



            Selain bermanfaat besar, Hidrat Metana (CH4) yang digunakan juga berbahaya bila terlepas tanpa kontrol ke atmosfer. dimana Hidrat metana punya kemampuan memanaskan suhu atmosfer lebih cepat 21 kali karbon. Sehingga perlu kajian dan survey mendalam dalam hal ini. Negara yang berikilim subtropis yang jauh dari aktivitas vulkanisme dasar laut sudah banyak mengembangkan energi alternatif ini terutama daerah Eropa timur dan austaralia karena mereka terbatas atas energi. Sedangkan Indonesia sendiri, ladang hidrat metana sedikit ditemukan, dikarenakan indonesia merupakan daerah permukaan dasar laut yang panas dan sering terjadi aktivitas vulkanis yang mengakibatkan ladang hidrat metana sulit terbentuk. Namun negeri kita punya banyak pilih energi lain bisa kita manfaat, marilah saatnya kita berinovasi dari sekarang

Wednesday, 31 July 2013

Mengenal lebih jauh bahan bakar CNG


Compressed natural gas (CNG) adalah bahan bakar alternatif selain bensin atau solar. Di Indonesia, kita mengenal CNG sebagai bahan bakar gas (BBG). Bahan bakar ini dianggap lebih ‘bersih’ bila dibandingkan dengan dua bahan bakar minyak karena emisi gas buangnya yang ramah lingkungan. CNG dibuat dengan melakukan kompresi metana (CH4) yang diekstrak dari gas alam. CNG disimpan dan didistribusikan dalam bejana tekan, biasanya berbentuk silinder.
Argentina dan Brazil di Amerika Latin adalah dua negara dengan jumlah kendaraan pengguna CNG terbesar. Konversi ke CNG difasilitasi dengan pemberian harga yang lebih murah bila dibandingkan dengan bahan bakar cair (bensin dan solar), peralatan konversi yang dibuat lokal dan infrastruktur distribusi CNG yang terus berkembang. Sejalan dengan semakin meningkatnya harga minyak dan kesadaran lingkungan, CNG saat ini mulai digunakan juga untuk kendaraan penumpang dan truk barang berdaya ringan hingga menengah.
Sesungguhnya di Indonesia, CNG bukanlah barang baru. Pencanangan untuk menggunakan CNG yang harganya lebih murah dan lebih bersih lingkungan daripada bahan bakar minyak (BBM) sudah dilakukan sejak tahun 1986. Pada saat itu ditetapkan bahwa 20 persen dari armada taksi harus memakai CNG. Namun, karena pada saat itu harga BBM masih dianggap terjangkau dan stasiun pengisian BBM terdapat di mana-mana, maka minat untuk menggunakannya tidak sempat membesar.



Saat ini di Jakarta hanya terdapat 14 Stasiun Pengisi Bahan Bakar Gas (SPBG), tetapi yang berfungsi tak lebih dari enam SPBG. Untuk mendorong penggunaan CNG, Gubernur DKI Jakarta Sutiyoso mengharuskan bus TransJakarta yang melayani rute 2, rute 3, dan rute selanjutnya untuk menggunakan CNG.,Keunggulan dari bahan bakar CNG :

  • Komposisi utama terdiri atas metana dan etana
  • Metana (CH4) akan menghasilkan emisi gas buang yang bersih
  • Berat Jenis 0,6036 atau lebih ringan dari udara
  • Nilai Oktan ~ 120
  • Disimpan dalam bentuk gas pada tangki dengan tekanan 200 bar
  • Umumnya sistem di SPBG adalah on-line dengan jaringan pipa gas; alternatif menggunakan sistem mother-daughter




Penggunaan CNG

CNG dapat digunakan untuk mesin Otto (berbahan bakar bensin) dan mesin diesel (berbahan bakar solar).
Pengisian CNG dapat dilakukan dari sistem bertekanan rendah maupun bertekanan tinggi. Perbedaannya terletak dari biaya pembangunan stasiun vs lamanya pengisian bahan bakar. Idealnya, tekanan pada jaringan pipa gas adalah 11 bar, dan agar pengisian CNG bisa berlangsung dengan cepat, diperlukan tekanan sebesar 200 bar, atau 197 atm, 197 kali tekanan udara biasa. Dengan tekanan sebesar 200 bar, pengisian CNG setara 130 liter premium dapat dilakukan dalam waktu 3-4 menit.
Tangki CNG



Dengan tekanan sebesar 200 bar, tentunya penanganan CNG perlu dilakukan secara hati-hati. Antara lain dengan menggunakan tangki gas yang memenuhi persyaratan dan dipasang di bengkel yang direkomendasi. Tangki CNG dibuat dengan menggunakan bahan-bahan khusus yang mampu membawa CNG dengan aman. Desain terbaru tangki CNG menggunakan lapisan alumunium dengan diperkuat oleh fiberglass. Karena CNG lebih ringan dari udara, kebocoran tidak menjadi terlalu beresiko bila sirkulasi udara terjaga dengan baik. Jika gas terbakar, mesh logam atau keramik akan mencegah tangki agar tidak meledak.
Sama sekali tidak diperkenankan untuk memodifikasi tangki tersebut. Jika dianggap tangki yang dibeli volumenya terlalu kecil, lebih baik membeli tangki yang volumenya lebih besar daripada memodifikasinya sendiri. Sama sekali tidak diperkenankan untuk memodifikasi tangki tersebut. Jika dilakukan, daya tahan tangki tersebut terhadap tekanan tinggi menjadi tidak terukur.


perbandingan CNG  dengan LNG dan LPG

CNG kadang-kadang dianggap sama dengan LNG. Walaupun keduanya sama-sama gas alam, perbedaan utamanya adalah CNG adalah gas terkompresi sedangkan LNG adalah gas dalam bentuk cair. CNG secara ekonomis lebih murah dalam produksi dan penyimpanan dibandingkan LNG yang membutuhkan pendinginan dan tangki kriogenik yang mahal. Akan tetapi CNG membutuhkan tempat penyimpanan yang lebih besar untuk sejumlah massa gas alam yang sama serta perlu tekanan yang sangat tinggi. Oleh karena itu pemasaran CNG lebih ekonomis untuk lokasi-lokasi yang dekat dengan sumber gas alam.
CNG juga perlu dibedakan dari LPG, yang merupakan campuran terkompresi dari propana (C3H8) dan butana (C4H10).

Monday, 22 July 2013

Cara cepat mengetahui daya dan torsi mesin

Untuk menghitung Torsi dan tenaga kuda (hp) mobil yang kita gunakan menjadi problem yang sangat kompleks yang membutuhkan bengkel otomotif dan peralatan pengujian khusus. Untungnya, produsen mobil pada umumnya memasukkan beberapa informasi yang sangat penting dalam produk mereka sehingga kita dapat menghitungnya sendiri secara manual,berikut merupakan cara cepat mengetahui torsi dan daya dari mesin mobil.

1.   Dapatkan harga torsi mobil Anda di brosur spesifikasi teknik. Ini adalah salah satu nilai yang berguna bagi Anda dalam melakukan perhitungan. Di bawah “spesifikasi teknis” atau sesuatu yang mirip, itu akan memberi Anda nilai torsi sebesar nilai RPM tertentu.



2.  Hitung tenaga kuda. Menggunakan rumus HP = (RPM * T) / 5252, menentukan tenaga kuda efektif mobil Anda.

Contoh: Sebuah Porsche 911 menghasilkan torsi sebesar 480-ft. pada 2.500 RPM.Dinyatakan dalam persamaan, yaitu HP = (2500 * 480) / 5252 = 1,200,000 / 5252 = 228.48hp

MENGHITUNG HORSEPOWER DARI MOTOR LISTRIK

1.  Mengumpulkan angka. Tegangan (V) dari motor akan dinyatakan dalam volt. Arus (I) akan dinyatakan dalam ampere, dan efisiensi (Eff) akan dinyatakan sebagai persentase.



2.  Hitung tenaga kuda. Menggunakan rumus HP = (V * I * Eff) / 746, menentukan tenaga kuda mobil listrik

Contoh: Sebuah motor 240v menarik 100 amp, dengan efisiensi 80%. HP = (240 x 100 x .80) / 746 = 19.200 / 746 = 25.75hp